
1

DATA
BASE

AUTOMATION

COLLABORATION

SU
CC
ES
S

CONFIGURE

CHATOPS KN
OW

LE
DG
E

BA
CK

UP
S

IDEA

CREATE

LEARN

M
ICROSERVICES

DEPLOYM
ENTS

PE
RF
OR
M
AN
CE

MONITOR

PLAN

The DevOps Guide
to Database Management

2

3

Table of Contents
1. Database challenges with Devops 4

1.1. Database collaboration in DevOps 5
1.2. What does this mean for databases? 5

2. The impact of microservice architectures 6

3. Managing databases in a DevOps environment 8
3.1. Deployment automation 8
3.2. Performance monitoring 9
3.3. Schema changes 9
3.4. Version upgrades 10
3.5. Automated Failover 11
3.6. Data distribution 11
3.7. Managing data flows 13

4. ChatOps 14

5. Summary 15

6. About ClusterControl 16

7. About Severalnines 16

8. Related Resources from Severalnines 17

4

DevOps has become one of the fastest growing terms in IT for the past fi ve years,
and this comes to no surprise. DevOps is a term that is a compound of the words
development and operations, where it refers to the collaboration and communication
between (software) developers and information technology operations professionals. It
changes the way these two groups of people work in a cultural and environmental way.
This improves the building, testing and releasing of software and allows more reliable,
frequent and rapid deployments.

In devops the traditional development process is changed to a continuous process of
developing and releasing the product. This circular process is much more suitable for
short development cycles, where the cycle iterates over code (plan), build (create), test
(verify), package, release, confi gure and monitor.

As quick and continuous release cycles dictate
frequent updates from development to
production, how do databases fi t in this picture?
Most RDBMS databases are mostly built around
securing the integrity of the data. This means
that certain trade-off s have been made on how
the database copes with (schema) changes. In
general any change to the structure of the data in
a RDBMS will involve locking and take a painfully
long to apply. To overcome this problem, many
DevOps will rather favor schemaless datastores
like MongoDB. Schemaless datastores have made
the trade-off of fl exibility over consistency.

Database challenges with
Devops

CR
EA

TE
PLAN

PA
CK

AG
EVERIFY

RE
LE
AS
E CONFIGURE

MO
NI

TO
R

DEV OPS

Consistency

Persistency Flexibility

5

1.1. Database collaboration in DevOps
As the DevOps method requires more close collaboration, this shifts a lot in the roles
of the people that are part of the team and some of them will now share parts of their
roles. The developer not only develops the application, but also is part of the release
process. The developer is more likely to know most about the application, so the
developer should also know how to monitor the application best. Similarly, QA has to
know what they are going to test, how it works and what environment it is being hosted
in. The operations members will likely know more about the internals of the application
they are hosting, saving valuable time when troubleshooting issues.

With the shift in roles, additional responsibilities will be inevitable. The developer
can no longer hide behind the fact that “she is just the developer” when it comes
to operational issues, similarly for the other roles. As the whole team now owns the
application, the team members will also feel more connected to the product that they
are responsible for. Naturally they will feel more responsible when an outage occurs.

So who will be responsible for the role of DBA in a
DevOps environment? In most cases this will be a
collaborative role between the developer and the ops
roles. The developer will drive the initiative, changes
and performance aspects while the ops will handle the
consistency and security.

1.2. What does this mean for databases?
As mentioned before relational databases are less fl exible by nature, while DevOps
actually requires more fl exibility. It will be a continuous trade-off between Dev and Ops
for the solution chosen. Regardless of the solution chosen, there are many challenges
that need to be overcome.

The fi rst challenge will be deployment automation. As continuous deployments will
be part of the DevOps process, the entire environment needs to be fully automated,
provisioned and primed with the necessary data.

The second challenge will be the incompatibility between relational databases and
microservice architectures. Microservices have, by defi nition, a shared-nothing
architecture. The reasoning behind this is to lift any dependencies on other
microservices and to prevent the outage of one microservice to aff ect the other. This
means that in its purest form a microservice will be nothing more than a single table in
a single schema on a database cluster.

The third challenge is collaboration. Collaboration between the members of a DevOps
team will be key to its success. Communication is the most important element in
collaboration, so it is essential that every member of the team is up to date with the
latest information. Communication channels, also known as ChatOps, will play a big role
in this.

In this whitepaper we will touch upon each of these challenges one by one. We will also
see how Severalnines ClusterControl can be used to address these challenges.

Who is the
DBA in a
DevOps
environment?

6

Microservices are embraced fully by DevOps as they are easy to deploy, have a strong
cohesion and loose coupling. In their philosophy they share nothing, have small and
simple schema designs and are interchangeable with other data stores. This means their
features are very generic, not storage specifi c and this makes them easy to deploy.

Even though microservices shouldn’t share data between each other, this poses an
architectural challenge. How would you get data that is stored in another microservice?
If one microservice depends on a piece of data that is stored in another service, the
simplest solution would be to query the data directly from the database of the other
service. From a development perspective this is the easiest and quickest solution, but

The impact of microservice
architectures

MySQL MongoDB PostgreSQL Hadoop Redis

login
microservice

(Java)

user details
microservice

(Python)

billing
microservice

(Go)

recommendations
microservice

(Scala)

User API Billing API Recommendations
API

7

it actually poses a big problem. It would create a dependency from one microservice
to another. Any change to the data structure or infrastructure of the depending
microservice could create a direct issue.

For example, when a DevOps team, responsible for microservice A, decides they need
to scale the database, move data to another datacenter, failover the master to a slave
or even change the schema to satisfy new requirements, the depending microservice B
should be aware of any of these changes. This probably results in microservice B failing
to retrieve the correct data and results in throwing an error. As you can see, the data
layer within microservices is dynamic, so you do not want any consumers of data of
these services to be depending on their internal structure. Instead these microservices
are supposed to retrieve data only via the API of the microservice.

This abstraction introduces another challenge to their architecture: if they are
depending on the API from another microservice, they might be waiting for a request
made to an API of another dependent service. If the dependent microservice responds
slowly, or throws out errors due to their database layer, this get propagated upstream
as well. This means these microservices need to be made resilient against any API errors
that may occur from the start. The added benefi t is that this abstracts the entire data
layer away from the frontend.

The benefi t of this, is that now the microservices can be independently changed,
sharded or scaled and data locality is no longer an issue. This also opens up the ability
to utilize specifi c features of a non-standard datastore when necessary. If it is necessary
to solve a scalability issue by moving from MySQL to MongoDB, this would not pose a
problem anymore for all depending microservices.

ClusterControl supports various diff erent database topologies that would satisfy most
storage needs. Bringing up a new database for a microservice can be done in minutes
and scaling of the database has been built in from the start. ClusterControl is also multi-
datacenter ready, so scaling beyond a single datacenter is no longer an issue.

8

As DevOps requires a whole diff erent approach of working, the focus lies mainly on
automation. As developers and ops need to bring-up and tear-down environments
frequently, this means that bringing up an environment needs to be a (fully) automated
process. If a new build environment is necessary, it should be deployed within minutes.
For the database environment this might pose a problem, as the databases are mostly
used for persistency and consistency of data.

3.1. Deployment automation
Installing database software can be tedious. The initial software installation can be a
breeze, but after this step a lot of work awaits. Customization, confi guration, tuning and
setting up (replication) topologies are only a few of these examples. Apart from the fact
that a manual setup takes a lot of time, it also is error prone. After everything eventually
has been setup, maintenance becomes another hurdle. Automation of systems is
therefore key, and this starts with deployment automation.

Deployment automation can easily be achieved by frameworks like Puppet, Chef and
Ansible. These frameworks are excellent for deploying packages and static (confi g)
fi les. However this does pose a problem with databases. Database packages can be
installed, confi guration fi les deployed and managed, however databases also require
meta information like users, ACLs and password management. Also in more complex
environments involving clustered database nodes and high availability components like
load balancers, it requires a more holistic approach.

Bringing up an environment doesn’t just end with the deployment of software. Diff erent
environments, like development, QA and Disaster Recovery, have diff erent purposes. If
an environment needs to be fully deployed, it also includes additional settings and data
to be populated. Data and settings can be extracted from existing backups, but it will be
quite diffi cult automating the extracting and fi ltering of records from backups. It will not
be an easy task to automate this inside a confi guration management tool like Puppet or
Chef, as those frameworks are mainly built for deployment only. This type of automation
would be possible with Ansible, as Ansible has more scripting, dependencies and
workfl ow options. However these scripts need to be maintained, reviewed and altered
for every change performed in the database topology or in the deployment of the
application. It would be much easier if you could simply clone an existing environment
into a new one and then remove or obfuscate data after cloning.

ClusterControl is able to automate the deployment of a clustered database
environment, as well as clone an existing database cluster onto a new set of nodes,
without downtime of the source cluster. This makes the deployment of on demand
environments much easier.

With the ClusterControl command line interface (CLI), the user can send commands to
the ClusterControl backend and retrieve the current status. This makes the automation

Managing databases in a
DevOps environment

9

part of bringing up entire environments even easier. Now anyone can script the creation
of the full stack with only a few lines of code. Especially with environments that consist
of many loosely coupled components, like microservices, this can save a lot of time.

3.2. Performance monitoring
Once you have the overview of the full stack of the application and services, you can
truly monitor everything that is happening in your system. Especially with Microservices
this could easily be separated on a per-service dashboard. The benefi t of this separation
would be that any problems can easily be isolated or pinpointed to a single service.
Once identifi ed the impediment could be lifted and performance restored back to
normal.

In general developers have a preference for application performance monitoring
systems like New Relic and appDynamics. These products do give the entire full stack
overview, but do they actually provide the necessary database insights? These products
only measure from the application point of view, but have no ability to drill down
further into the database metrics. For this you would still depend on a specifi c database
monitoring system. This would then get into true DevOps: developers and ops resolving
performance issues collaboratively.

3.3. Schema changes
As mentioned in the previous section, schema changes are inevitable within DevOps.
Whenever a new version of the application or microservice requires an additional fi eld
to be stored, the change is foreseeable and simple to perform. It really poses a problem
once fi elds are changed or removed. This means the structure of the table is changed
and fi elds may not be returned in the expected manner.

Especially when an ORM is used, this will require frequent schema changes whenever
an object is altered. Most ORMs will auto-generate schema changes and queries based
upon their internal code. In some cases these ORMs will only function properly when
given grants to alter and modify schemas, otherwise they will produce a fatal exception

Galera #1

ClusterControl
(cmon)

Cluster 1

Galera #3

Galera #2

ClusterControl CLI
(s9s)

10

that the schema they are expecting is not according to the one found in the database.
The simplest solution would be to grant these ORMs schema modifi cation rights, but
this makes it complicated to stop the ORM from performing schema changes on the fl y.

Schema changes would create internal locks in the
database server, resulting in other queries being
queued and piling up until the database server runs
out of resources. And even if the schema changes
are properly applied via online schema change
applications, like pt-osc and gh-ost, it could still
create performance issues due to the diff erence in
schema.

Therefore detection of unauthorized schema changes
is essential. Monitoring the layout of your schemas
isn’t that diffi cult, but detecting the change is a bit harder. A schema change detection
feature is available in ClusterControl, so you will be alterted if a schema gets altered.

Detection is the same as prevention, and often the impact of a schema change is
only visible once it gets deployed to production. As a pre-emptive measurement you
can load test your schema change by mimicking your production workload using a
benchmark tool like sysbench. If you are already using a proxy solution, in some cases
you could copy all queries to a second database node or cluster to see the impact of
your schema change. In the case of ProxySQL it is possible to even mirror the entire
workload to another server and do complete workload analytics, based upon the query
time.

3.4. Version upgrades
Version upgrades are very important for keeping the database software up to date.
In the new version, bugs and vulnerabilities may be resolved, stability improved and
performance may be far greater than the current production version. These all are valid
reasons to upgrade the software to the latest version.

While regular version upgrades are routine for DBAs and sysops, in DevOps this may
actually pose a similar challenge as with schema changes: who is responsible for
these and how do we apply them safely to a running production system? Like schema
changes, the solution for this isn’t going to be an easy and clear one. Whist having to
retain high availability, the system may be vulnerable at the same time.

You won’t be dealing only with major version upgrades, though - it’s more likely that
you’ll be upgrading to minor versions more often, like 5.6.x -> 5.6.y. Most likely, it is so
that the newest version brings some fi xes for bugs that aff ect your workload, but it can
be any other reason. There is a signifi cant diff erence in the way you perform a major
and a minor version upgrade.

A minor upgrade is relatively easy to perform - most of the time, all you need to do is
to just install the new version using the package manager of your distribution. These
upgrades are easy to script and coordinate. ClusterControl contains version upgrade
functionality that supports these minor updates.

For a major upgrade you may be required to perform various tasks and/or conversions
after you have upgraded. For instance with MySQL it is advised to dump all contents
of your database and load it into the new version after you have upgraded. Naturally
major upgrades will be unique per use case, and therefore not suitable to be

11

automated. However if you have to perform the major upgrade many times on many
separate clusters, it would be benefi cial to create a document with the outlines of the
upgrade process and automate this as much as possible

3.5. Automated Failover
Making a microservice resilient, means that the loss of a database node should not
interfere with the service. A small outage, like a failing slave node, should hardly be
noticeable from the application point of view. If there is a major failure in the topology,
like a master node crashing, election of a new master and failover to another node
needs to happen within seconds. Some users might experience a glitch, but the
application will remain stable. There are various ways of making the microservice
resilient against database failures, and most of these reside in the way of connecting to
the database nodes.

If the microservice is cluster aware, the application would need to be confi gured with
all available nodes and it would be required to keep state of each node in the cluster.
This will put an extra strain on the application, as it now needs to understand the
underlying database software and its ways of failing over. It all depends on the method
of implementation and it might be error prone.

To overcome this, the application could be confi gured using a resource manager like
Zookeeper or Etcd. This resource manager will then keep track of the state of the cluster
and would always provide the correct confi guration to the application. Even though
this is a very popular method used in script languages that lack their own internal state,
for languages like Java who keep state this might pose a problem. A database ORM
layer, like Hibernate, might not be able to cope with sudden changes in roles of open
(persistent) connections. A node that once used to be a master has now become a
slave, so how would the ORM cope with such a change? To get around this, this might
require additional logic inside the application that would solve issues like this.

It would be far better to have a transparent and invisible process that manages the
availability of the cluster. This is where a load balancer or database proxy would come
in handy. The load balancer and proxy will closely monitor all nodes in the cluster and
retain availability for the application by redirecting connections to the appropriate
nodes in the cluster. The failover itself will be managed by another external process,
to ensure that the proxy component isn’t a single point of failure. ClusterControl can
facilitate the automated recovery and failover in replicated or clustered setups, while it
also is able to deploy the load balancers and proxies with the appropriate healthchecks.

3.6. Data distribution
We mentioned data locality in a previous paragraph. Data distribution plays a big role
in DevOps. As the environments and schemas may seem to be getting more simplifi ed
by the Microservices architecture, the complexity of data distribution increases with the
introduction of multi-datacenter, functional sharding and horizontal sharding.

First of all the microservices dictate the functional sharding of data. Every microservice
is supposed to run contained in their own schema and tables. As your end users
will utilize multiple microservices, their data will be distributed amongst the various
schemas. Unless all your microservices use the exact same database cluster for storage,
this functionally shards your data between the various datastores used.

12

Some microservices may show uneven usage. While some of them only contain the user
data, others may store details or even log-/click-data on every interaction with the user.
This means every microservice may show diff erent query- and growth patterns. Once
a microservice becomes larger than the storage capacity of the used database cluster,
a new scaling approach needs to be taken. If additional future growth is expected,
horizontal sharding has to be considered. This means the data of the microservice is
no longer contained within a single database cluster, but rather spread over a group of
clusters.

Whether infrastructure grows over time or availability is demanded, multi-datacenter is
something to keep in mind. If data is stored over multiple data centers, this means the
data locality may not be present. Moving data from one site to another might pose a
risk in both availability and security. Make sure your multi-datacenter strategy includes
failover scenarios and secured connections (VPN, SSL).

In a previous paragraph we spoke about schema changes, and once your databases
are sharded schema changes will become a lot harder to perform. As the application
or microservice reads and writes from multiple shards, it now becomes essential to
orchestrate your schema changes in a proper way. It almost become unavoidable to
make the application or microservice schema aware, where it understands the various
versions of the schema used to prevent any fatal exceptions once it does not comply to
this.

Master

Slave

Original replication setup

read/write
read/write

Application
sercer

read

read/write order_status_log

read order_status_log

Master

Slave

Second replication setup

13

3.7. Managing data fl ows
Microservices abstract complexity away from the application using them, but the
fl ip side is that the complexity of the infrastructure increases at the same rate. We
mentioned data locality, sharding and schema change so far, and these are just a few
examples of how the complexity can increase. To make the underlying infrastructure
more transparent and easy to use, is the use of a load balancer or proxy that we have
described earlier. With the help of these you can manage the data fl ows more easily
and isolate the database infrastructure from the application.

Using a proxy can also help you perform maintenance on your infrastructure. If you are
working on one node, another can take over its role in the cluster. The proxy will detect
the node you are working on is no longer available, and reroute the traffi c to another
available node.

Datacenter “A” Datacenter “B”

WAN

Application
layer

Load balancer
layer

Database cluster
layer

ClusterControlReverse Proxy
(MaxScale, ProxySQL

or HAProxy)

Web/Application/Client

master

slave 1

slave 2

readsmysql

reads

reads/writes

14

Proxies can also help with scaling.
Once you add a new node to a cluster,
it will automatically receive traffi c from
the proxy. This way the application
doesn’t need to be aware of the
nodes it can reach, and the scaling of
the cluster becomes an automated
process. For the application it doesn’t
matter whether it is sending its queries
to 1 or 20 servers: as long as the proxy responds within reasonable time it will be fi ne.
This brings us to another benefi t of using a proxy for these cases: autoscaling clusters
becomes possible this way. With workload analysis on the proxy, you could auto-
provision new nodes and add them to the cluster when workloads are becoming too
big to handle for the cluster. Once the workload is low enough, you could remove and
de-provision these nodes again.

15

One of the most important aspects of DevOps is the communication between team
members and other teams. To improve communication, often many chat channels for
the various teams and microservices are used. If anyone deploys a new version, it is
customary to communicate and coordinate the deployment via the chat as well. Anyone
responsible or involved in this process will be put in the same channel, that if anything
goes wrong during deployment the appropriate person is immediately available.

Since databases are an integral part of applications and microservices, it will be a large
part of the discussions in the channel. It would improve the situation if the database
would also take part in the channel, and you can do this by providing as much
information about the database to the discussion. Status updates, database health,
backup status and high availability are just examples of the information you could let
contribute to the discussion. ClusterControl can easily integrate in the most used chat
platforms via the ClusterControl Integrations.

Since ChatOps is bi-directional, it would also improve if users of the channel were
able to send messages to the database as well. For example, if the team creates a
new backup prior to deploying a new version of their application, a snapshot of the
previous state would be available if a rollback is necessary. For this the ClusterControl
commandline can easily be integrated using a chatbot. The ClusterControl CCBot
modules can either be installed on your existing chatbot, or installed as a standalone
chatbot using the Hubot framework.

ChatOps

16

Even though in more traditional environments developers and DBAs work on the
opposite part of the chain, in DevOps they actually have to collaborate. This may feel
unnatural at fi rst, but it actually makes sense once you start to perform true DevOps:
separation of function through microservices. The isolation of (performance) issues
through microservice will make it much easier to resolve and overcome them. Frequent
deployments ensure these problems are resolved much faster than in a traditional
development environment. Even if these frequent deployments require as often schema
changes, applying them through automation will make it much easier to cope with
them. And as long as all members of the same DevOps team are collectively working
through ChatOps, nobody will miss an update.

Summary

17

ClusterControl is the all-inclusive open source database management system for users
with mixed environments that removes the need for multiple management tools.
ClusterControl provides advanced deployment, management, monitoring, and scaling
functionality to get your MySQL, MongoDB, and PostgreSQL databases up-and-
running using proven methodologies that you can depend on to work. At the core
of ClusterControl is it’s automation functionality that let’s you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more.

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the “anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date
via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with offi ces in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

About ClusterControl

About Severalnines

Deploy Manage Monitor Scale

http://severalnines.com/company

18

ClusterControl for SysAdmins & DevOps
ClusterControl helps SysAdmins & DevOps professionals
with solutions to their database challenges. Learn about the
ClusterControl features that address these challenges and what
the benefi ts are that can be gained from using ClusterControl to
automate and manage your open source databases.

Learn more

The DevOps Guide to Database Backups for
MySQL and MariaDB
This whitepaper discusses the two most popular backup
utilities available for MySQL and MariaDB, namely mysqldump
and Percona XtraBackup. It further covers topics such as how
database features like binary logging and replication can be
leveraged in backup strategies. And it provides best practices
that can be applied to high availability topologies in order to
make database backups reliable, secure and consistent.

Download here

Webinar replay: 9 DevOps Tips for Going in
Production with Galera Cluster for MySQL /
MariaDB
Galera Cluster for MySQL / MariaDB is easy to deploy, but how
does it behave under real workload, scale, and during long term
operation? Proof of concepts and lab tests usually work great
for Galera, until it’s time to go into production. Throw in a live
migration from an existing database setup and devops life just
got a bit more interesting ...

If this scenario sounds familiar, then this webinar replay is for
you!

Watch replay

Related Resources from
Severalnines

The DevOps Guide
 to Database Backups

for MySQL and MariaDB

https://severalnines.com/product/clustercontrol/database-management-sysadmin-devops
https://severalnines.com/resources/whitepapers#download_whitepaper/4896
https://severalnines.com/webinars/9-devops-tips-going-production-galera-cluster-mysql-mariadb

19

© 2017 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

Deploy Manage

Monitor Scale

	1. Database challenges with Devops
	1.1. Database collaboration in DevOps
	1.2. What does this mean for databases?

	2. The impact of microservice architectures

	3. Managing databases in a DevOps environment
	3.1. Deployment automation
	3.2. Performance monitoring
	3.3. Schema changes
	3.4. Version upgrades
	3.5. Automated Failover
	3.6. Data distribution
	3.7. Managing data flows

	4.	ChatOps

	5.	Summary

	6. About ClusterControl
	7. About Severalnines
	8. Related Resources from Severalnines

